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Abstract. This paper is devoted to solving a reverse-convex problem. The approach presented here
is based on Global Optimality Conditions. We propose a general conception of a Global Search
Algorithm and develop each part of it. The results of numerical experiments with the dimension up
to 400 are also given.
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1. Introduction

It is well known that a wide class of applications gives rise to so-called reverse
convex problems, i.e. the problems of the form:

f (x)→ min, x ∈ S, g (x) > 0, (P)

whereg is a convex function,S ⊂ Rn andf may be even linear [1-5].
Right the constraintg (x) > 0 generates the principal non-convexity, whose

immediate consequence is that there exist local solutions which are not global
minimizers in (P). Moreover, there is no method which allows to find a global
solution in reverse convex problems of large dimension [1-5]. In particular, con-
spicuous limitation of conventional local optimization methods is their ability of
being trapped at a local minimum (or even a stationary point [6-7]).

Therefore, ‘the core of a global optimization method is to deal with the question
of how to transcend stationarity’ [4] or how to escape from a stationary point.

In our opinion, may be, the most promising way in the field is given by the
global optimality conditions (GOC) [6-9]. Only GOC allow to recognize that a
given stationary point is actually a global minimizer, and if it is not, it allows to
proceed to a better feasible point.

On the other hand, for a practice it would be convenient to possess an algorithm,
which can find anε-global solution for large dimension problems. And for realizing
how important the role of problems size is, it suffices to see for example [5], where
using a modern version of the cut algorithm [1][2], the authors have not obtained
satisfactory results for a test reverse convex problem of dimensions less than 10.
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62 ALEXANDER S. STREKALOVSKY AND IDER TSEVENDORJ

Our paper is specially devoted to these two objectives: (1) to demonstrate how
to use a mathematical theory for solving an application problem and (2) to study
the influence of problem dimension on the solving time.

The paper consists of 4 sections. In Section 2 we will present the GOC disclos-
ing it’s algorithmic features. In Section 3 we will introduce a general conception
of the algorithm based on GOC, and similar to a so-called< - algorithm [10].
Finally, in Section 4 we will present the results of numerical solving a reverse
convex problem (similar to the problem from [5]) for a dimension till 400.

Henceforth we’ll use ordinary notations from optimization and convex analysis
[7]. For example< ·, · > stands for the scalar product inRn, andf ′ (x) ∈ Rn is
the gradient of a differentiable functionf : Rn→ R.

We would like to express the gratitude to our respectable referee for the perti-
nent remarks which allow us to ameliorate the presentation of the paper.

2. Global optimality conditions

Now consider the problem (P), wheref is a continuous function onRn, S ⊂ Rn

andg is a differentiable convex function, such that

S ⊂ (intdomg) . (1)

Let in addition

D = {x ∈ Rn/x ∈ S, g(x) > 0} ,
f∗ = infx {f (x)/x ∈ D} > −∞.

}
(2)

We will also use the following assumption:

There is no global solutionx∗ ∈ D such thatg (x∗) > 0. (G)

Then the following result takes place.

THEOREM 1 [9]. Suppose, the assumption(G) holds. If the pointz is a global
minimizer of(P) (z ∈ Arg min (P)), then

∀y : g (y) = 0, ∀x ∈ S : f (x) 6 f (z),

< g′ (y) , x − y >6 0.

}
(E1)

REMARKS
1) If f is differentiable andS is convex, then it follows from (E1)(y = z)

〈µg′ (z)− λf
′
(z) , x − z〉 6 0 ∀x ∈ S. (EC)

Condition (EC) is the classical local optimality condition in problem (P) [6–7].

2) In order to verify (E1), we have to solve∀y : g(y) = 0 the linearized problem:

〈g′ (y) , x〉 → max, x ∈ S, f (x) 6 f (z) ; (PL)
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TESTING THE<- STRATEGY FOR A REVERSE CONVEX PROBLEM 63

(whose solution, if one exists, we will denote byx(y)), and, after that, we have
to check the inequality :

〈g′ (y) , x (y) − y〉 6 0 ∀y : g (y) = 0.

If there exists somey, g(y) = 0, such that〈g′(y), x(y) − y〉 > 0, due to
convexity ofg(·), we obtain 0<

〈
g′(y), x(y)− y

〉
6 g(x(y))− g(y).

Therefore,g(x(y)) > g(y) = 0, x(y) ∈ S, f (x(y)) 6 f (z) .

Consequently, in virtue of assumption (G) we have a possibility to decrease the
functionf , beginning at the pointx(y). On the other hand, ifz is a stationary
point, but not a global solution, there always exist [9] pointsỹ, g (ỹ) = 0,

andx̃ ∈ S, f (̃x) 6 f (z) , such that
〈
g′ (ỹ) , x̃ − ỹ

〉
> 0.

That allows to ameliorate (as shown above) the value off (z), i.e. to transcend
stationarity, and to escape from a stationary point.

3) We have to note a relation between Theorem 1 and the following result. It
has been proved in [3] that ifz solves Problem (P), thenz is a solution to the
problem

g(x) ↑ max, x ∈ S, f (x) 6 f (z),

andg(z) = 0. The latter immediatly implies, under assumption (G), the results
of Theorem 1. This can be proved, for instance, using linearization machinery
for Convex Maximization from [10].

So, one can say that Theorem 1 is a linearization form of the result from [3]
mentioned above. According to certain opinions, the first appearance of the
type of results for reverse convex problem is contained in [12].

Now we will display the assumptions under which the condition (E1) becomes
sufficient for a feasible pointz to be a global solution in problem (P).

THEOREM 2 [9]. Suppose condition(G) does not certainly hold, but instead in
addition to conditions(1) and(2) we have

−∞ 6 inf
(
g,Rn

)
< g (z) = 0; (3)

∀y ∈ S, g(y) = 0, ∃v = v(y) ∈ clcoS :〈
g′(y), v − y

〉
> 0.

}
(4)

Then, stronger form of condition(E1)

∀y : g(y) = 0, ∀x ∈ clcoS, f (x) 6 f (z) ,〈
g′ (y) , x − y

〉
6 0.

}
(E2)

is also sufficient forz to be a global solution in problem(P).
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Further, if we introduce the function

ϕ (z) = sup
x,y

{〈
g′ (y) , x − y

〉
/ g (y) = 0, x ∈ clcoS, f (x) 6 f (z)

}
, (5)

then condition (E2) can be transformed to the following one:

ϕ (z) 6 0.

Taking into account that∀z ∈ S, g (z) = 0, the following is obvious 0=〈
g′ (z) , z− z

〉
6 ϕ (z), we finally obtain

ϕ(z) = 0. (E)

We can prove that under certain assumptions similar to(3) and(4) the condition

lim
k→∞ϕ

(
zk

) = 0 (E′)

is necessary and sufficient for a sequence{zk} to be minimizing in problem (P).

3. General conception of global optimization algorithm for (P)

For the sake of simplicity, in the sequel we will assumeS to be convex and closed.
According to(5), in order to verify of the GOC (E) we have to maximize the
function

9 (x, y) = 〈
g′ (y) , x − y

〉
with respect to two variablesx andy, such that :

x ∈ S, f (x) 6 f (z) , g (y) = 0.

In order to simplify the problem, we propose to decompose it into two problems,
the first of which is (PL)∀y : g (y) = 0. And the second is so-called level problem:
(u ∈ S, f (u) 6 f (z))

hu (v)
def= 〈

g′ (v) , u− v
〉→ max

v
, g (v) = 0. (6)

Assume that the problem (6) is solvable. For example, in the case of quadratic
functiong(·), we can solve the level problem analytically.

LEMMA 1. If g(x) = 1/2〈Cx, x〉 − γ, whereγ > 0 and C is a symmetric
(C = C>), definite positive (C > 0(n× n))-matrix, the level problem solution
w = w(u) is as follows

w = µu, µ = (〈Cu, u〉 /2γ )
1
2 (7)
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Suppose{εk} , {δk} are sequences, such thatεk ↓ 0, δk ↓ 0 (k→∞) ,

εk > 0, δk > 0, k = 0, 1, 2..., and we have a local search method (LSM)
capable to construct∀ε > 0 anε−stationary point to problem (P) [6,7,11].

Let us describe step by step the Global Search Algorithm based on the condition
(E) and similar to this one from [10]. Letk := 0, x0 ∈ S, g(x0) > 0.

Step 1.Beginning from the initial pointxk ∈ S, g(xk) > 0, and using a LSM, get
anεk−stationary point

zk ∈ S, g(zk) = 0.

Step 2.Construct an approximation

Rk = {y1, y2, . . . , yN/ g(yi) = 0, i = 1, . . . , N; N = N(k)}
of the level surfaceg(y) = 0.

Step 3.∀i = 1, . . . , N solve the linearized problem with the toleranceδk

〈g′(yi), x〉 → max, x ∈ S, f (x) 6 f (zk). (PLi)

Let ui be aδk-solution of (PLi).

Step 4.∀i = 1, . . . , N, solve the level problem:

hi(v) = 〈
g′(v), ui − v

〉→ max
v

, g(v) = 0. (6i)

Let wi be aδk-solution of(6i ).

Step 5.Setηk :=
〈
g′(wj), uj −wj

〉 = max16i6N

〈
g′

(
wi

)
, ui −wi

〉
.

Step 6. If ηk > 0, then setxk+1 := uj , k := k + 1, and loop to step 1.

Step 7. If ηk 6 0 andεk 6 ε∗, δk 6 δ∗ whereε∗, δ∗ are given tolerances, stop.
If εk > ε∗ or δk > δ∗ setk := k + 1 and loop to step 1.

REMARKS
4) In order to be theoretically based, we assume that on step 1 it is possible to

find a stationary point by a local search method.

On step 2 we can construct a pertinent approximation (resolving set) of the
level surfaceg(x) = 0 (at each iteration).

On step 3 one can find a global solution of the linearized problem (which may
be non-convex!)

On step 4 one can globally solve the level problem.

Under these assumptions the description of the<− algorithm becomes com-
pletely substantiated.
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5) It can be easily seen that the sequence{zk} generated by the algorithm above
is a sequence ofεk−stationary points due to describing of step 1.

6) On steps 1 and 3 one is supposed to use standard algorithms of local opti-
mization, if the functionf (·) is convex. If it is not, it is necessary to study
non-convexity generated byf (·) and to use convenient algorithms for finding
a global maximizer of the problem (PLi). This property of the algorithm above
can be viewed as advantageous, because it allows to use standard software
libraries.

7) Whenηk > 0 (step 6), due to convexity ofg(·), we have

g(xk+1)− g(zk) = g(uj )− g(wj) >
〈
g′(wj), uj −wj

〉 = ηk > 0

whenceg(xk+1) > g(zk)+ ηk = ηk > g(zk) = 0.

Therefore, on account of (PLi) it follows

f (xk+1) 6 f (zk), xk+1 ∈ S, g(xk+1) > 0.

Consequently beginning new local search atxk+1 under the assumption (G),
or, how they say in [1, 4], when the constraintg(·) is essential, we will obtain
zk+1 with the propertyf (zk+1) < f (zk).

Thus, the algorithm above becomes relaxing, i.e. decreasing the value off (·)
at every iteration, whenηk > 0.

8a) Clearly, choosing a method for solving the problems (PLi) or (6i), as well as
the local search on Step 1 of the algorithm above is rather difficult, but in some
sense standard, ‘already seen’ [6,7,11].

On the other hand, the constructing of the approximationRk on Step 2 is
of the paramount importance from the view point of real global search. Sec-
ondly, it is unprecedented, ‘never seen before’ and consequently it gives rise
to unforeseen difficulties and novel problems.

So, the crucial question here is on what principle the choice of approximationRk

must be based. We propose to look at the situation from the viewpoint of Global
Optimality Conditions.

Suppose that problems (PLi) and (6i) are solvable andui andwi are theirδ-
solutions respectively.

DEFINITION 1. An approximation

Rk =
{
y1, y2, . . . , yN/g(yi) = 0, i = 1, . . . , N; N = N (k)

}
is said to be(zk, ε, δ)− resolving, if from the fact thatzk is notε-solution to(P),
i.e.

f
(
zk

)
> inf

x
{f (x) /x ∈ S, g (x) > 0} + ε

jogo341.tex; 30/06/1998; 12:38; p.6



TESTING THE<- STRATEGY FOR A REVERSE CONVEX PROBLEM 67

it follows

max
16i6N

〈
g′(wi), ui −wi

〉 4= ηk > 0.

In other words, ifRk is a (zk, ε, δ)−resolving set, andzk is not anε−global
solution in (P), this allows us to transcend stationarity, i.e. to escape from theε-
stationary pointzk with an obligatory improvement of the value of the objective
functionf (·) according to Remark 3.

8b) It can be readily seen that on step 2 we don’t precise the way to construct a
pertinent approximation of the level surface.

In fact, the choice of the way requires the deep acquaintance with the nature
and the structure of the problem under study, as well as the deep understanding
of GOC (Theorems 1 and 2).

For instance, the existence ofRk follows from the fact that ifzk is not aεk−
global solution, then there exists [9] someyk :

g(yk) = 0,
〈
g′(yk), x(yk)− yk

〉
> 0

(wherex(yk) is a solution of the linearized problem (PL), withy = yk).

But how should we find or constructRk for a concrete problem? We have to
decide on this question during the solution, this is to be precised in the case.
For instance, it will be shown computationally in Section 4 for a concrete
problem.

In the same manner,on step 1, you are free to choose any local search method,
taking into account, first, the nature and the structure of the problem. In addi-
tion, the local search must be fast, since we have to repeat it at each iteration
of <-algorithm.(k=0,1,2,...)

Similarly, on step 3, for solving the linearized problem you are free to choose
a method, which must be, nevertheless, very, very fast, because we have to
repeat the solving of the linearized problem several times at each iteration.
So, analytical solution (if possible) would be the best!

On step 4, there is also no exact algorithm to solve the level problem(6i ),
which must be solved several times at each iteration! You have to solve it by
quickest machinery, better analytically! Lemma 1 gives us the good example.

To summarize, one can say, the<- algorithm is not an algorithm in a sense,
but a strategy for solving reverse convex problems of the form (6).

Moreover, we can prove that under the assumptions of Remark 4 the<- algorithm
generates a minimizing sequence{zk} for problem (P).
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Since the choice of the resolving set is crucial for the success of global search,
it will be reasonable to call the algorithm described above the<-algorithm, that we
will do in the sequel.

By the way, the importance of approximation of the level setg(x) = 0 will be
demonstrated in section 4, where numerical experiments are presented.

In the following section, we will describe each step of the<-algorithm for a
concrete problem similar to this one from [5].
REMARK
9) It can be easily seen that on steps 3 and 5 one has to solve similar problems

(PLi) or (6i) for everyi = 1, . . . , N . Therefore, it would be actually relevant
to apply some parallel processing to perform the work.

In such cases, parallel processing can enable us to solve reverse convex prob-
lems of substantially larger dimension than those solvable using a serial com-
puter. Some applications require real time solutions. For these applications, it
is likely that parallel processing is the only way to obtain acceptable perfor-
mance. And right the<- algorithm provides this possibility.

4. Numerical experiments

As noted in the introduction , this section is devoted to numerical solving of the
problem [5]:

f (x) = 1
2 ‖x − y‖2→ min,

−16 xi 6 1, i = 1, . . . , n;

g(x)
4= ‖x‖2− (n− 0.5) > 0,

 (P1)

wherey = (−0.25,1, . . . ,1)> ∈ Rn. It can be easily seen that the global solution
of (P1) isx∗ = (−√0.5, 1, . . . , 1)>, f (x∗) = 0.104,andx0 = (1,−1, . . . ,−1)> ∈
Rn is the worst feasible point.

As displayed in [5], the known ‘cut method’ cannot solve a similar to (P1)
problem with a linear objective function beyond the dimension 10.

Here we present, first, the results of numerical solving the problem (P1) for the
dimension up to 400 by the<-algorithm, that gives rise to using the<-algorithm
for solving reverse convex problems of large dimension.

It would be pertinent to do a few remarks on the local search method for the
problem (P1) and on solving the corresponding linearized problem(g(v) = 0, v 6=
z, ζ = f (z)) :〈

g′(v), x
〉→ max, f (x) 6 ζ,

x ∈ 5 = {x ∈ Rn / ai 6 xi 6 bi, i = 1, . . . , n}

 (PL)
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According to remark 8b), which advises to choose a fast and simplest local search
method we used a combination of the gradient projection method (wheng(xs) > 0)
and a variant of linearization method (wheng(xs) = 0, see [11]).

Besides, taking into account that the solving of problem (PL) is only a part of the
<- algorithm repeatedN = N(k) times at each iteration(z = zk), we had to solve
(PL) rapidly and efficiently. Usage of the analytical solutions of the problems :〈

g′(v), x
〉→ max, x ∈ 5; (PL1)〈

g′(v), x
〉→ max, f (x) 6 ζ ; (PL2)

considerably facilitates the (PL)– solving.
Now let us demonstrate the considerable influence of the choice of a level set

approximation on the solution, solving time and the volume of work. Since it is not
yet analytically constructed of any resolving set for (P1), during the tests we used
the following approximations of the level set

U = {x / g(x) = 0= g(z)} :

R1
4=

{
vi = z− θie

i = (z1, . . . , zi−1,−zi , zi+1, . . . z), ei = (0, . . . , 1i , . . . , 0),

θi : g(vi(θ)) = 0, i = 1, . . . , n

}
R2
4=

{
vi = (z1, . . . , zi−1,−zi ,−zi+1, . . . , zn), i = 1, . . . , n− 1

}
R3
4=

{
v1 = (−z1,−z2, z3, . . . , zn), vn = (z1, . . . , zn−2,−zn−1,−zn),

vi = (z1, . . . , zi−2,−zi−1,−zi ,−zi+1, zi+2, ...zn), i = 2, . . . , n− 1,

}
R12

4=
{

v1 = (−z1, z2, . . . , zn), vn+1 = (z1, . . . , zn−1,−zn)

vi = (z1, . . . , zi−2,−zi−1,−zi , zi+1, . . . , zn), i = 2, . . . , n,

}
R21

4= R2 ∪
{
vn = (z1, . . . , zn−1,−zn)

}
R22

4= R2 ∪
{
vn = (−z1,−z2, . . . ,−zn)

}
For solving the problem (PLi) and for local search in (P1), the corresponding

algorithms above were used. The solution of the level problem (6i) was obtained
according to Lemma 1.
Let n be the dimension of the problem,
f0 = f

(
x0

)−- the initial value of the functionf (·),
R-the level set approximation,fm-the best obtained value off (·),
St-the number of obtained stationary points, from what one managed to escape,
LP -the number of linearized problems (PLi) obtained during the solution, and
finally,T be the time of solving ( min:sec ).

The tests were performed on a serial PC/AT IBM- 386.
Naturally, we have first tested the problem of small dimension (3–8).
Having analyzed the results, we excluded from the consideration the worst ap-

proximationsR3 and R22. Studying Tables 1 and 2 one can easily find out that
the approximationR1 enables us to obtain the global solution for all dimensions,
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Table 1.

n f0 R fm St LP T

3 4.781 R1 0.104 4 9 00:00.43

R2 0.4573 4 6 00:00.44

R3 0.4573 4 8 00:00.60

R12 0.104 7 14 00:01.27

R21 0.4573 4 7 00:00.61

R22 0.4573 4 7 00:00.55

4 6.781 R12 0.104 11 25 00:02.08

5 8.781 R1 0.104 6 20 00:01.15

R2 4.241 5 11 00:00.88

R3 2.2419 4 10 00:00.82

R12 0.104 12 32 00:03.46

R21 2.2419 6 17 00:01.32

R22 2.2419 7 18 00:01.32

6 10.781 R2 3.7482 4 13 00:01.26

7 12.781 R1 0.104 8 35 00:02.52

R2 1.740 5 21 00:01.75

R3 4.2641 5 17 00:01.21

R12 1.740 7 29 00:02.14

R21 1.740 5 22 00:01.75

R22 1.740 5 22 00:01.81

8 14.781 R2 3.7490 5 22 00:02.08

R12 1.7476 8 39 00:03.41

while other approximations have not solved the problem (P2) for some dimen-
sions. Moreover, some approximation may enable us to find the solution for some
dimension but does not provide it for close dimensions. To get convinced of this, it
suffices to analyze Table 3.

The conclusion is obvious: having obtained first promising numeric results, a
mathematician must be careful concerning different choices of resolving sets. The
same thing can be demonstrated by Table 4.

Now, we present the numeric solving results for Problem (P2) of dimension up
to 100 by the<-algorithm using the approximationsR1, R2, R12 . Here one can
see, in particular, the influence of the problem dimension on the solving time.

Regardless of the promising results forR2 andR12, we must remember Tables
1, 2 and 3 and be always very careful concerning their application to problem (P1).
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Table 2.

n f0 R fm St LP T

9 16.781 R1 0.104 10 54 00:03.90

R12 0.104 8 42 00:03.13

R21 0.104 6 34 00:02.75

R2 1.747 5 24 00:02.08

10 18.781 R1 0.104 11 65 00:04.45

R12 1.7475 9 53 00:04.45

R21 0.104 7 44 00:03.68

R2 3.7413 6 33 00:01.92

11 20.781 R1 0.104 12 77 00:05.38

R2 1.7475 6 35 00:02.86

R12 0.104 9 56 00:03.73

R21 0.104 7 47 00:03.73

12 22.781 R2 3.7631 7 46 00:02.53

R12 1.7473 10 69 00:04.67

13 24.721 R1 0.104 14 104 00:07.30

R2 1.7474 7 48 00:03.90

R12 0.104 10 72 00:05.43

R21 0.104 8 62 00:05.00

14 26.781 R2 3.7627 8 61 00:00.35

R12 1.7474 11 87 00:06.04

15 28.781 R1 0.104 16 135 00:09.45

R2 1.7474 8 63 00:05.05

R12 0.104 11 90 00:06.87

R21 0.104 9 79 00:06.42

Table 3.

n f0 R fm St LP T

14 26.781 R2 3.7627 8 61 00:03.35

15 28.781 R2 1.7474 8 63 00:05.05

16 30.781 R2 0.104 9 79 00:04.89

17 32.781 R2 1.7474 9 80 00:06.65

18 34.781 R2 0.104 10 98 00:06.73

19 36.781 R2 1.7474 10 99 00:08.30
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Table 4.

n f0 R fm St LP T

R1 0.104 21 230 00:14.01

20 38.781 R2 0.104 11 119 00:06.59

R12 0.104 13 133 00:09.39

R1 0.104 31 495 00:33.01

30 58.781 R2 0.104 16 252 00:15.60

R12 0.104 18 273 00:20.98

R1 0.104 41 860 01:01.36

40 78.781 R2 0.104 21 439 00:29.33

R12 0.104 13 463 00:38.12

R1 0.104 51 1325 01:44.25

50 98.781 R2 0.104 26 674 00:49.79

R12 0.104 28 703 01:03.05

R1 0.104 61 1890 02:39.45

60 118.781 R2 0.104 31 959 01:16.40

R12 0.104 33 993 01:35.03

R1 0.104 71 2555 03:55.96

70 138.781 R2 0.104 36 1294 01:53.31

R12 0.104 38 1333 02:18.74

R1 0.104 81 3320 05:27.30

80 158.781 R2 0.104 41 1679 02:37.41

R12 0.104 43 1723 03:12.07

R1 0.104 91 4125 07:21.32

90 178.781 R2 0.104 46 2114 03:32.70

R12 0.104 48 2163 04:13.81

R1 0.104 101 5150 09:33.97

100 198.781 R2 0.104 51 2599 04:37.53

R12 0.104 53 2653 05:30.26

So, very likely, we have now the numerical demonstration of fundamental im-
portance of the resolving set selection for solving a reverse convex problem.

In some sense one can say that solving a reverse convex problem is reduced to
constructing a resolving set. This means that using the<-algorithm for solving a
reverse convex problem, we actually apply the new information about the problem
in the form of Global Optimality Conditions.
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Table 5.

n f0 R fm St LP T

5 8.781 R20 0.104 6 17 00:01.76

10 18.781 R20 0.104 7 44 00:03.40

20 38.781 R20 0.104 11 120 00:08.68

30 58.781 R20 0.104 16 255 00:19.88

40 78.781 R20 0.104 21 440 00:37.30

50 98.781 R20 0.104 26 675 01:02.45

60 118.781 R20 0.104 31 960 01:35.89

70 138.781 R20 0.104 36 1295 02:22.75

80 158.781 R20 0.104 41 1680 03:18.23

90 178.781 R20 0.104 46 2115 04:25.13

100 198.781 R20 0.104 51 2600 05:47.46

150 298.781 R20 0.104 76 5775 16:27.12

200 398.781 R20 0.104 101 10200 34:02.52

300 598.781 R20 0.104 151 22800 01hr:44:34.80

400 798.781 R20 0.104 201 25136 03hr:58:18.65

Finally, we display the best obtained results for solving problem (P1), which
have been gained by using the following approximation:

R20=
 vi = (z1, . . . , zi−1,−zi,−zi+1, zi+2, . . . , zn)

>, i = 1.n− 1;

vn = z− 2f ′(z)· < f ′(z), z > / ‖f ′(z)‖2


This approximation enables us to find the global solution for all the considered
dimensions, as well asR1, but the solving time byR20 is smaller than that one by
R1. In other words, one can say that, in this case, we were successful to construct
computationally the resolving sets for the problem (P1).

5. Conclusion

In this paper we considered the general deterministic approach for solving a reverse
convex problem based on Global Optimality Conditions (GOC).
In particular,

a) we have introduced the global search algorithm based on GOC, so-called<-
algorithm;

b) further, we have studied certain features of<-algorithms application for a
concrete problem;
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c) finally, we have demonstrated the possibility of solving the reverse convex prob-
lem for large dimensions by using the<-algorithm and studied the influence
of a level set approximation on the solution as well as on the solving time.
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